add directory traversal / deep-verify capability? #308

Open
opened 2008-02-08 22:26:00 +00:00 by warner · 10 comments

We might split our current three-level directory capability structure (write,
read, verify) into four levels: write, read, traverse, verify. The 'traverse
cap' would be able to access the traverse cap of child directories, and the
verify cap of child files. It would not be able to read child names.

The issue is that, at present, the verifier manifest (a set of verifier caps
for all files and directories reachable from some root) can only be generated
by someone who holds a readcap for the root. This manifest generation cannot
be safely delegated to some other party (such as a central allmydata server).
So we're forced to decide between having customers expose their files to us
(by giving us their root readcap) or being required to create their manifest
(for file checking/repair) on their own.

If we had traversal caps, then customers could give us the traversal cap
instead of their read cap. We could still see the shape of their filesystem
(and probably the length of their filenames, and the size of their files),
but perhaps that would be little enough exposure that customers would be
comfortable with revealing it. In exchange, we could provide the service of
keeping all their files checked and repaired with less effort on their part,
even when they leave their node offline for months at a time.

The implementation would require a couple of pieces:

  • dirnode capabilities would need to have a four-level structure. Writecaps
    beget readcaps. Readcaps beget traversecaps. Traversecaps beget
    verifycaps.
  • I think this means that mutable file caps need an extra intermediate layer
    as well: this is tricky, and will require some staring at the DSA mutable
    file diagram to find a place that could accomodate it.
  • Each edge entry contains five child items: (name, writecap, readcap,
    traversecap, metadata)
  • 'name', 'readcap', and 'metadata' are encrypted with a key derived from
    the dirnode's readcap.
  • 'writecap' is encrypted with the dirnode's writecap.
  • 'traversecap' is encrypted with the dirnode's traversecap

When we do DSA dirnodes, we should take advantage of the compatibility break
to implement something like this. I suspect it will require changes to the
DSA scheme as well.

(there is probably a better name for this concept.. "walk cap"? "manifest
cap"? "deep verify cap"?)

We might split our current three-level directory capability structure (write, read, verify) into four levels: write, read, traverse, verify. The 'traverse cap' would be able to access the traverse cap of child directories, and the verify cap of child files. It would not be able to read child names. The issue is that, at present, the verifier manifest (a set of verifier caps for all files and directories reachable from some root) can only be generated by someone who holds a readcap for the root. This manifest generation cannot be safely delegated to some other party (such as a central allmydata server). So we're forced to decide between having customers expose their files to us (by giving us their root readcap) or being required to create their manifest (for file checking/repair) on their own. If we had traversal caps, then customers could give us the traversal cap instead of their read cap. We could still see the shape of their filesystem (and probably the length of their filenames, and the size of their files), but perhaps that would be little enough exposure that customers would be comfortable with revealing it. In exchange, we could provide the service of keeping all their files checked and repaired with less effort on their part, even when they leave their node offline for months at a time. The implementation would require a couple of pieces: * dirnode capabilities would need to have a four-level structure. Writecaps beget readcaps. Readcaps beget traversecaps. Traversecaps beget verifycaps. * I think this means that mutable file caps need an extra intermediate layer as well: this is tricky, and will require some staring at the DSA mutable file diagram to find a place that could accomodate it. * Each edge entry contains five child items: (name, writecap, readcap, traversecap, metadata) * 'name', 'readcap', and 'metadata' are encrypted with a key derived from the dirnode's readcap. * 'writecap' is encrypted with the dirnode's writecap. * 'traversecap' is encrypted with the dirnode's traversecap When we do DSA dirnodes, we should take advantage of the compatibility break to implement something like this. I suspect it will require changes to the DSA scheme as well. (there is probably a better name for this concept.. "walk cap"? "manifest cap"? "deep verify cap"?)
warner added the
c/code
p/major
t/enhancement
v/0.7.0
labels 2008-02-08 22:26:00 +00:00
warner added this to the eventually milestone 2008-02-08 22:26:00 +00:00

I like "deep verify cap" as a name.

However, their manifest doesn't change while they are off-line, right? So it doesn't seem too onerous to require them to produce manifests for checkers whenever they change their tree.

Still, it is an interesting idea.

I like "deep verify cap" as a name. However, their manifest doesn't change while they are off-line, right? So it doesn't seem too onerous to require them to produce manifests for checkers whenever they change their tree. Still, it is an interesting idea.
Author

true. The requirement would be that they produce and deliver (reliably) a
manifest some time after they stop changing things, and before they shut down
their machine or go offline for a month. One concern is that we can't predict
their behavior, so we might have to be fairly aggressive about pushing these
manifests (like, after a minute of inactivity), and they're relatively
expensive to build (since it requires a traversal of their whole directory
tree). My original hope was to produce a manifest once per day, but I'm not
sure how realistic that is w.r.t. a laptop which goes offline unexpectedly.

Another factor to keep in mind is directory sharing. We haven't talked much
about who "owns" shared directories: one reasonable answer is that everybody
does: if you can read the file, you share responsibility for keeping it alive
(by maintaing a lease on it along with everyone else). Another reasonable
policy is that we only add leases to files in writeable directories,
declaring "ownership" to be equal to mutability. This approach would work
better for read-only directories which are shared among many people, but
would fail if the write-capable "owner" of that directory got tired of
maintaining it.

In any case, if the set of files in your manifest can change without your
involvement (because somebody else made additions to a shared directory),
then we might want the manifest to be updated in a more offline fashion, and
to do this we'd need some sort of traversal cap. On the other hand, we might
make the argument that the manifest of the person who added that new child
may contain the new file, and their manifest would be good enough to keep the
file alive. Or, we could just state that you have to give us a new manifest
at least once a month if you want to take advantage of our file keepalive
services.

On the other other hand, the file keepalive service might also be the
first-line quota enforcement service, and we might require that you submit
your traversal cap as fairly cheap way to estimate the amount of space you're
consuming. In this world, the rule would be that we'll only do keepalives for
the 1G or 10G or whatever you've contracted with us to store, and the quota
is primarily enforced by adding up the sizes of all files in the manifest
(which we calculate ourselves, using the traversal cap). In this case, we'd
only check with the storage servers rarely, either randomly or if we suspect
that the client is storing large files outside the directory graph that
they've given us traversal authority over. If the storage servers tell us
that this user is storing more data than the manifest contains, we might get
suspicious.

true. The requirement would be that they produce and deliver (reliably) a manifest some time after they stop changing things, and before they shut down their machine or go offline for a month. One concern is that we can't predict their behavior, so we might have to be fairly aggressive about pushing these manifests (like, after a minute of inactivity), and they're relatively expensive to build (since it requires a traversal of their whole directory tree). My original hope was to produce a manifest once per day, but I'm not sure how realistic that is w.r.t. a laptop which goes offline unexpectedly. Another factor to keep in mind is directory sharing. We haven't talked much about who "owns" shared directories: one reasonable answer is that everybody does: if you can read the file, you share responsibility for keeping it alive (by maintaing a lease on it along with everyone else). Another reasonable policy is that we only add leases to files in writeable directories, declaring "ownership" to be equal to mutability. This approach would work better for read-only directories which are shared among many people, but would fail if the write-capable "owner" of that directory got tired of maintaining it. In any case, if the set of files in your manifest can change without your involvement (because somebody else made additions to a shared directory), then we might want the manifest to be updated in a more offline fashion, and to do this we'd need some sort of traversal cap. On the other hand, we might make the argument that the manifest of the person who added that new child may contain the new file, and their manifest would be good enough to keep the file alive. Or, we could just state that you have to give us a new manifest at least once a month if you want to take advantage of our file keepalive services. On the other other hand, the file keepalive service might also be the first-line quota enforcement service, and we might require that you submit your traversal cap as fairly cheap way to estimate the amount of space you're consuming. In this world, the rule would be that we'll only do keepalives for the 1G or 10G or whatever you've contracted with us to store, and the quota is primarily enforced by adding up the sizes of all files in the manifest (which we calculate ourselves, using the traversal cap). In this case, we'd only check with the storage servers rarely, either randomly or if we suspect that the client is storing large files outside the directory graph that they've given us traversal authority over. If the storage servers tell us that this user is storing more data than the manifest contains, we might get suspicious.
warner changed title from directory traversal capability to add directory traversal / deep-verify capability? 2008-02-12 04:15:00 +00:00
warner added
c/code-dirnodes
and removed
c/code
labels 2008-04-24 23:51:00 +00:00
warner modified the milestone from eventually to undecided 2008-06-01 20:43:33 +00:00

Tagging issues relevant to new cap protocol design.

Tagging issues relevant to new cap protocol design.

I'm pretty sure we want this, and I see how to do it for the Elk Point design.

The name deep-verify seems preferable because it would allow you to verify, not just traverse.

I'm pretty sure we want this, and I see how to do it for the Elk Point design. The name deep-verify seems preferable because it would allow you to verify, not just traverse.
daira modified the milestone from undecided to eventually 2009-11-24 17:54:02 +00:00
zooko modified the milestone from eventually to 2.0.0 2010-02-23 03:08:39 +00:00

In http://tahoe-lafs.org/pipermail/tahoe-dev/2009-July/002302.html , zooko asks whether we should make all verify caps deep (in the same way that all directory read caps are deep). He also points out this counterargument:

Now the reason why it could be useful to have a Shallow Verify Cap -- to give someone the ability to verify the integrity of a directory without also giving them the ability to get the verify-caps of the children -- is for a kind of data-privacy. You might want to give lots of people the ability to verify the integrity of your directories without also giving them the ability to trace your directory structure -- the sizes and link structure of your directories and files. As we've recently been discussing, it might be nice for every storage server to have a verify cap to go with every share that it holds. We generally agree that "verify caps are not secret" -- everyone in the world can see everyone else's verify caps. You might not want everyone to be able to see the shape of your filesystem though!

For the next version of the Elk Point protocol I'm working on (v4), I plan to make shallow verify caps the same as storage indices. So, it would be automatic that every storage server has a shallow verify cap for each share that it holds.

In this context I agree with the counterargument. A server shouldn't automatically get deep verify authority for the shares it holds.

zooko argued for a different conclusion:

The only problem is: they can do that anyway. Anybody who can observe your Tahoe storage service connections (even though they are encrypted) or who operates a storage server can easily detect the exact structure of your filesystem -- which directories are linked to which other directories and files, as well as the precise size of all of the files. To defend against this sort of traffic analysis or pattern detection is somewhere between "hard" and "impossible". Our comrades over at the GNUnet project, the Freenet project, and others have been trying to develop such techniques for years (both Brian and I have contributed to such projects in the past, Brian more recently than I). Whether they're close to succeeding is not clear to me (perhaps some representative of such projects or someone whose expertise is more current than mine could speak up). But it is certain that TahoeLAFS will not offer such privacy in the next couple of releases.

I don't agree that the cap protocol should be designed in a way that precludes this privacy gain. It's certainly hard to achieve privacy of directory structure against storage servers (even when running Tahoe-LAFS over Tor, I2P, etc.). However, if we move to an unencrypted storage protocol (or make encryption optional for that protocol), then making all verify caps deep would reveal the whole directory structure even to passive observers.

In <http://tahoe-lafs.org/pipermail/tahoe-dev/2009-July/002302.html> , zooko asks whether we should make all verify caps deep (in the same way that all directory read caps are deep). He also points out this counterargument: > Now the reason why it could be useful to have a Shallow Verify Cap -- to give someone the ability to verify the integrity of a directory without also giving them the ability to get the verify-caps of the children -- is for a kind of data-privacy. You might want to give lots of people the ability to verify the integrity of your directories without also giving them the ability to trace your directory structure -- the sizes and link structure of your directories and files. As we've recently been discussing, it might be nice for every storage server to have a verify cap to go with every share that it holds. We generally agree that "verify caps are not secret" -- everyone in the world can see everyone else's verify caps. You might not want everyone to be able to see the shape of your filesystem though! For the next version of the Elk Point protocol I'm working on (v4), I plan to make shallow verify caps the same as storage indices. So, it would be automatic that every storage server has a shallow verify cap for each share that it holds. In this context I agree with the counterargument. A server shouldn't automatically get deep verify authority for the shares it holds. zooko argued for a different conclusion: > The only problem is: *they can do that anyway*. Anybody who can observe your Tahoe storage service connections (even though they are encrypted) or who operates a storage server can easily detect the exact structure of your filesystem -- which directories are linked to which other directories and files, as well as the precise size of all of the files. To defend against this sort of traffic analysis or pattern detection is somewhere between "hard" and "impossible". Our comrades over at the GNUnet project, the Freenet project, and others have been trying to develop such techniques for years (both Brian and I have contributed to such projects in the past, Brian more recently than I). Whether they're close to succeeding is not clear to me (perhaps some representative of such projects or someone whose expertise is more current than mine could speak up). But it is certain that TahoeLAFS will not offer such privacy in the next couple of releases. I don't agree that the cap protocol should be designed in a way that precludes this privacy gain. It's certainly hard to achieve privacy of directory structure against storage servers (even when running Tahoe-LAFS over Tor, I2P, etc.). However, if we move to an unencrypted storage protocol (or make encryption optional for that protocol), then making all verify caps deep would reveal the whole directory structure even to *passive* observers.

If you can't see the SVG attachment, try http://jacaranda.org/tahoe/immutable-elkpoint-4.png

If you can't see the SVG attachment, try <http://jacaranda.org/tahoe/immutable-elkpoint-4.png>

Attachment immutable-elkpoint-4.svg (85692 bytes) added

Immutable file protocol "Elk Point 4" (Scalable Vector Graphics format). [errors in text]corrected

**Attachment** immutable-elkpoint-4.svg (85692 bytes) added Immutable file protocol "Elk Point 4" (Scalable Vector Graphics format). [errors in text]corrected

A known weakness in Elk Point 4 is that the holder of a read cap can't verify that the value of Ctext_X in the share is correct (and hence that the decryption Plain_X, which would hold the verify caps of a directory's children, is correct). This is OK if Plain_K holds read/verify caps for the directory's children, because a read cap holder can use those and ignore Plain_X.

A known weakness in Elk Point 4 is that the holder of a read cap can't verify that the value of Ctext_X in the share is correct (and hence that the decryption Plain_X, which would hold the verify caps of a directory's children, is correct). This is OK if Plain_K holds read/verify caps for the directory's children, because a read cap holder can use those and ignore Plain_X.

Replying to davidsarah:

A known weakness in Elk Point 4 is that the holder of a read cap can't verify that the value of Ctext_X in the share is correct (and hence that the decryption Plain_X, which would hold the verify caps of a directory's children, is correct). This is OK if Plain_K holds read/verify caps for the directory's children, because a read cap holder can use those and ignore Plain_X.

Oh, there's a better solution. We can include hash(CS, Plain_K) in the share (incidentally fixing #453), and then compute K as a hash of that and Plain_X. Then the read cap holder can check the decrypted Plain_X against K, even though it doesn't in general know CS.

Replying to [davidsarah](/tahoe-lafs/trac/issues/308#issuecomment-365503): > A known weakness in Elk Point 4 is that the holder of a read cap can't verify that the value of Ctext_X in the share is correct (and hence that the decryption Plain_X, which would hold the verify caps of a directory's children, is correct). This is OK if Plain_K holds read/verify caps for the directory's children, because a read cap holder can use those and ignore Plain_X. Oh, there's a better solution. We can include hash(CS, Plain_K) in the share (incidentally fixing #453), and then compute K as a hash of that and Plain_X. Then the read cap holder can check the decrypted Plain_X against K, even though it doesn't in general know CS.

Ticket retargeted after milestone closed (editing milestones)

Ticket retargeted after milestone closed (editing milestones)
meejah removed this from the 2.0.0 milestone 2021-03-30 18:40:46 +00:00
Sign in to join this conversation.
No labels
c/code
c/code-dirnodes
c/code-encoding
c/code-frontend
c/code-frontend-cli
c/code-frontend-ftp-sftp
c/code-frontend-magic-folder
c/code-frontend-web
c/code-mutable
c/code-network
c/code-nodeadmin
c/code-peerselection
c/code-storage
c/contrib
c/dev-infrastructure
c/docs
c/operational
c/packaging
c/unknown
c/website
kw:2pc
kw:410
kw:9p
kw:ActivePerl
kw:AttributeError
kw:DataUnavailable
kw:DeadReferenceError
kw:DoS
kw:FileZilla
kw:GetLastError
kw:IFinishableConsumer
kw:K
kw:LeastAuthority
kw:Makefile
kw:RIStorageServer
kw:StringIO
kw:UncoordinatedWriteError
kw:about
kw:access
kw:access-control
kw:accessibility
kw:accounting
kw:accounting-crawler
kw:add-only
kw:aes
kw:aesthetics
kw:alias
kw:aliases
kw:aliens
kw:allmydata
kw:amazon
kw:ambient
kw:annotations
kw:anonymity
kw:anonymous
kw:anti-censorship
kw:api_auth_token
kw:appearance
kw:appname
kw:apport
kw:archive
kw:archlinux
kw:argparse
kw:arm
kw:assertion
kw:attachment
kw:auth
kw:authentication
kw:automation
kw:avahi
kw:availability
kw:aws
kw:azure
kw:backend
kw:backoff
kw:backup
kw:backupdb
kw:backward-compatibility
kw:bandwidth
kw:basedir
kw:bayes
kw:bbfreeze
kw:beta
kw:binaries
kw:binutils
kw:bitcoin
kw:bitrot
kw:blacklist
kw:blocker
kw:blocks-cloud-deployment
kw:blocks-cloud-merge
kw:blocks-magic-folder-merge
kw:blocks-merge
kw:blocks-raic
kw:blocks-release
kw:blog
kw:bom
kw:bonjour
kw:branch
kw:branding
kw:breadcrumbs
kw:brians-opinion-needed
kw:browser
kw:bsd
kw:build
kw:build-helpers
kw:buildbot
kw:builders
kw:buildslave
kw:buildslaves
kw:cache
kw:cap
kw:capleak
kw:captcha
kw:cast
kw:centos
kw:cffi
kw:chacha
kw:charset
kw:check
kw:checker
kw:chroot
kw:ci
kw:clean
kw:cleanup
kw:cli
kw:cloud
kw:cloud-backend
kw:cmdline
kw:code
kw:code-checks
kw:coding-standards
kw:coding-tools
kw:coding_tools
kw:collection
kw:compatibility
kw:completion
kw:compression
kw:confidentiality
kw:config
kw:configuration
kw:configuration.txt
kw:conflict
kw:connection
kw:connectivity
kw:consistency
kw:content
kw:control
kw:control.furl
kw:convergence
kw:coordination
kw:copyright
kw:corruption
kw:cors
kw:cost
kw:coverage
kw:coveralls
kw:coveralls.io
kw:cpu-watcher
kw:cpyext
kw:crash
kw:crawler
kw:crawlers
kw:create-container
kw:cruft
kw:crypto
kw:cryptography
kw:cryptography-lib
kw:cryptopp
kw:csp
kw:curl
kw:cutoff-date
kw:cycle
kw:cygwin
kw:d3
kw:daemon
kw:darcs
kw:darcsver
kw:database
kw:dataloss
kw:db
kw:dead-code
kw:deb
kw:debian
kw:debug
kw:deep-check
kw:defaults
kw:deferred
kw:delete
kw:deletion
kw:denial-of-service
kw:dependency
kw:deployment
kw:deprecation
kw:desert-island
kw:desert-island-build
kw:design
kw:design-review-needed
kw:detection
kw:dev-infrastructure
kw:devpay
kw:directory
kw:directory-page
kw:dirnode
kw:dirnodes
kw:disconnect
kw:discovery
kw:disk
kw:disk-backend
kw:distribute
kw:distutils
kw:dns
kw:do_http
kw:doc-needed
kw:docker
kw:docs
kw:docs-needed
kw:dokan
kw:dos
kw:download
kw:downloader
kw:dragonfly
kw:drop-upload
kw:duplicity
kw:dusty
kw:earth-dragon
kw:easy
kw:ec2
kw:ecdsa
kw:ed25519
kw:egg-needed
kw:eggs
kw:eliot
kw:email
kw:empty
kw:encoding
kw:endpoint
kw:enterprise
kw:enum34
kw:environment
kw:erasure
kw:erasure-coding
kw:error
kw:escaping
kw:etag
kw:etch
kw:evangelism
kw:eventual
kw:example
kw:excess-authority
kw:exec
kw:exocet
kw:expiration
kw:extensibility
kw:extension
kw:failure
kw:fedora
kw:ffp
kw:fhs
kw:figleaf
kw:file
kw:file-descriptor
kw:filename
kw:filesystem
kw:fileutil
kw:fips
kw:firewall
kw:first
kw:floatingpoint
kw:flog
kw:foolscap
kw:forward-compatibility
kw:forward-secrecy
kw:forwarding
kw:free
kw:freebsd
kw:frontend
kw:fsevents
kw:ftp
kw:ftpd
kw:full
kw:furl
kw:fuse
kw:garbage
kw:garbage-collection
kw:gateway
kw:gatherer
kw:gc
kw:gcc
kw:gentoo
kw:get
kw:git
kw:git-annex
kw:github
kw:glacier
kw:globalcaps
kw:glossary
kw:google-cloud-storage
kw:google-drive-backend
kw:gossip
kw:governance
kw:grid
kw:grid-manager
kw:gridid
kw:gridsync
kw:grsec
kw:gsoc
kw:gvfs
kw:hackfest
kw:hacktahoe
kw:hang
kw:hardlink
kw:heartbleed
kw:heisenbug
kw:help
kw:helper
kw:hint
kw:hooks
kw:how
kw:how-to
kw:howto
kw:hp
kw:hp-cloud
kw:html
kw:http
kw:https
kw:i18n
kw:i2p
kw:i2p-collab
kw:illustration
kw:image
kw:immutable
kw:impressions
kw:incentives
kw:incident
kw:init
kw:inlineCallbacks
kw:inotify
kw:install
kw:installer
kw:integration
kw:integration-test
kw:integrity
kw:interactive
kw:interface
kw:interfaces
kw:interoperability
kw:interstellar-exploration
kw:introducer
kw:introduction
kw:iphone
kw:ipkg
kw:iputil
kw:ipv6
kw:irc
kw:jail
kw:javascript
kw:joke
kw:jquery
kw:json
kw:jsui
kw:junk
kw:key-value-store
kw:kfreebsd
kw:known-issue
kw:konqueror
kw:kpreid
kw:kvm
kw:l10n
kw:lae
kw:large
kw:latency
kw:leak
kw:leasedb
kw:leases
kw:libgmp
kw:license
kw:licenss
kw:linecount
kw:link
kw:linux
kw:lit
kw:localhost
kw:location
kw:locking
kw:logging
kw:logo
kw:loopback
kw:lucid
kw:mac
kw:macintosh
kw:magic-folder
kw:manhole
kw:manifest
kw:manual-test-needed
kw:map
kw:mapupdate
kw:max_space
kw:mdmf
kw:memcheck
kw:memory
kw:memory-leak
kw:mesh
kw:metadata
kw:meter
kw:migration
kw:mime
kw:mingw
kw:minimal
kw:misc
kw:miscapture
kw:mlp
kw:mock
kw:more-info-needed
kw:mountain-lion
kw:move
kw:multi-users
kw:multiple
kw:multiuser-gateway
kw:munin
kw:music
kw:mutability
kw:mutable
kw:mystery
kw:names
kw:naming
kw:nas
kw:navigation
kw:needs-review
kw:needs-spawn
kw:netbsd
kw:network
kw:nevow
kw:new-user
kw:newcaps
kw:news
kw:news-done
kw:news-needed
kw:newsletter
kw:newurls
kw:nfc
kw:nginx
kw:nixos
kw:no-clobber
kw:node
kw:node-url
kw:notification
kw:notifyOnDisconnect
kw:nsa310
kw:nsa320
kw:nsa325
kw:numpy
kw:objects
kw:old
kw:openbsd
kw:openitp-packaging
kw:openssl
kw:openstack
kw:opensuse
kw:operation-helpers
kw:operational
kw:operations
kw:ophandle
kw:ophandles
kw:ops
kw:optimization
kw:optional
kw:options
kw:organization
kw:os
kw:os.abort
kw:ostrom
kw:osx
kw:osxfuse
kw:otf-magic-folder-objective1
kw:otf-magic-folder-objective2
kw:otf-magic-folder-objective3
kw:otf-magic-folder-objective4
kw:otf-magic-folder-objective5
kw:otf-magic-folder-objective6
kw:p2p
kw:packaging
kw:partial
kw:password
kw:path
kw:paths
kw:pause
kw:peer-selection
kw:performance
kw:permalink
kw:permissions
kw:persistence
kw:phone
kw:pickle
kw:pip
kw:pipermail
kw:pkg_resources
kw:placement
kw:planning
kw:policy
kw:port
kw:portability
kw:portal
kw:posthook
kw:pratchett
kw:preformance
kw:preservation
kw:privacy
kw:process
kw:profile
kw:profiling
kw:progress
kw:proxy
kw:publish
kw:pyOpenSSL
kw:pyasn1
kw:pycparser
kw:pycrypto
kw:pycrypto-lib
kw:pycryptopp
kw:pyfilesystem
kw:pyflakes
kw:pylint
kw:pypi
kw:pypy
kw:pysqlite
kw:python
kw:python3
kw:pythonpath
kw:pyutil
kw:pywin32
kw:quickstart
kw:quiet
kw:quotas
kw:quoting
kw:raic
kw:rainhill
kw:random
kw:random-access
kw:range
kw:raspberry-pi
kw:reactor
kw:readonly
kw:rebalancing
kw:recovery
kw:recursive
kw:redhat
kw:redirect
kw:redressing
kw:refactor
kw:referer
kw:referrer
kw:regression
kw:rekey
kw:relay
kw:release
kw:release-blocker
kw:reliability
kw:relnotes
kw:remote
kw:removable
kw:removable-disk
kw:rename
kw:renew
kw:repair
kw:replace
kw:report
kw:repository
kw:research
kw:reserved_space
kw:response-needed
kw:response-time
kw:restore
kw:retrieve
kw:retry
kw:review
kw:review-needed
kw:reviewed
kw:revocation
kw:roadmap
kw:rollback
kw:rpm
kw:rsa
kw:rss
kw:rst
kw:rsync
kw:rusty
kw:s3
kw:s3-backend
kw:s3-frontend
kw:s4
kw:same-origin
kw:sandbox
kw:scalability
kw:scaling
kw:scheduling
kw:schema
kw:scheme
kw:scp
kw:scripts
kw:sdist
kw:sdmf
kw:security
kw:self-contained
kw:server
kw:servermap
kw:servers-of-happiness
kw:service
kw:setup
kw:setup.py
kw:setup_requires
kw:setuptools
kw:setuptools_darcs
kw:sftp
kw:shared
kw:shareset
kw:shell
kw:signals
kw:simultaneous
kw:six
kw:size
kw:slackware
kw:slashes
kw:smb
kw:sneakernet
kw:snowleopard
kw:socket
kw:solaris
kw:space
kw:space-efficiency
kw:spam
kw:spec
kw:speed
kw:sqlite
kw:ssh
kw:ssh-keygen
kw:sshfs
kw:ssl
kw:stability
kw:standards
kw:start
kw:startup
kw:static
kw:static-analysis
kw:statistics
kw:stats
kw:stats_gatherer
kw:status
kw:stdeb
kw:storage
kw:streaming
kw:strports
kw:style
kw:stylesheet
kw:subprocess
kw:sumo
kw:survey
kw:svg
kw:symlink
kw:synchronous
kw:tac
kw:tahoe-*
kw:tahoe-add-alias
kw:tahoe-admin
kw:tahoe-archive
kw:tahoe-backup
kw:tahoe-check
kw:tahoe-cp
kw:tahoe-create-alias
kw:tahoe-create-introducer
kw:tahoe-debug
kw:tahoe-deep-check
kw:tahoe-deepcheck
kw:tahoe-lafs-trac-stream
kw:tahoe-list-aliases
kw:tahoe-ls
kw:tahoe-magic-folder
kw:tahoe-manifest
kw:tahoe-mkdir
kw:tahoe-mount
kw:tahoe-mv
kw:tahoe-put
kw:tahoe-restart
kw:tahoe-rm
kw:tahoe-run
kw:tahoe-start
kw:tahoe-stats
kw:tahoe-unlink
kw:tahoe-webopen
kw:tahoe.css
kw:tahoe_files
kw:tahoewapi
kw:tarball
kw:tarballs
kw:tempfile
kw:templates
kw:terminology
kw:test
kw:test-and-set
kw:test-from-egg
kw:test-needed
kw:testgrid
kw:testing
kw:tests
kw:throttling
kw:ticket999-s3-backend
kw:tiddly
kw:time
kw:timeout
kw:timing
kw:to
kw:to-be-closed-on-2011-08-01
kw:tor
kw:tor-protocol
kw:torsocks
kw:tox
kw:trac
kw:transparency
kw:travis
kw:travis-ci
kw:trial
kw:trickle
kw:trivial
kw:truckee
kw:tub
kw:tub.location
kw:twine
kw:twistd
kw:twistd.log
kw:twisted
kw:twisted-14
kw:twisted-trial
kw:twitter
kw:twn
kw:txaws
kw:type
kw:typeerror
kw:ubuntu
kw:ucwe
kw:ueb
kw:ui
kw:unclean
kw:uncoordinated-writes
kw:undeletable
kw:unfinished-business
kw:unhandled-error
kw:unhappy
kw:unicode
kw:unit
kw:unix
kw:unlink
kw:update
kw:upgrade
kw:upload
kw:upload-helper
kw:uri
kw:url
kw:usability
kw:use-case
kw:utf-8
kw:util
kw:uwsgi
kw:ux
kw:validation
kw:variables
kw:vdrive
kw:verify
kw:verlib
kw:version
kw:versioning
kw:versions
kw:video
kw:virtualbox
kw:virtualenv
kw:vista
kw:visualization
kw:visualizer
kw:vm
kw:volunteergrid2
kw:volunteers
kw:vpn
kw:wapi
kw:warners-opinion-needed
kw:warning
kw:weapi
kw:web
kw:web.port
kw:webapi
kw:webdav
kw:webdrive
kw:webport
kw:websec
kw:website
kw:websocket
kw:welcome
kw:welcome-page
kw:welcomepage
kw:wiki
kw:win32
kw:win64
kw:windows
kw:windows-related
kw:winscp
kw:workaround
kw:world-domination
kw:wrapper
kw:write-enabler
kw:wui
kw:x86
kw:x86-64
kw:xhtml
kw:xml
kw:xss
kw:zbase32
kw:zetuptoolz
kw:zfec
kw:zookos-opinion-needed
kw:zope
kw:zope.interface
p/blocker
p/critical
p/major
p/minor
p/normal
p/supercritical
p/trivial
r/cannot reproduce
r/duplicate
r/fixed
r/invalid
r/somebody else's problem
r/was already fixed
r/wontfix
r/worksforme
t/defect
t/enhancement
t/task
v/0.2.0
v/0.3.0
v/0.4.0
v/0.5.0
v/0.5.1
v/0.6.0
v/0.6.1
v/0.7.0
v/0.8.0
v/0.9.0
v/1.0.0
v/1.1.0
v/1.10.0
v/1.10.1
v/1.10.2
v/1.10a2
v/1.11.0
v/1.12.0
v/1.12.1
v/1.13.0
v/1.14.0
v/1.15.0
v/1.15.1
v/1.2.0
v/1.3.0
v/1.4.1
v/1.5.0
v/1.6.0
v/1.6.1
v/1.7.0
v/1.7.1
v/1.7β
v/1.8.0
v/1.8.1
v/1.8.2
v/1.8.3
v/1.8β
v/1.9.0
v/1.9.0-s3branch
v/1.9.0a1
v/1.9.0a2
v/1.9.0b1
v/1.9.1
v/1.9.2
v/1.9.2a1
v/cloud-branch
v/unknown
No milestone
No project
No assignees
4 participants
Notifications
Due date
The due date is invalid or out of range. Please use the format "yyyy-mm-dd".

No due date set.

Dependencies

No dependencies set.

Reference: tahoe-lafs/trac#308
No description provided.